Source code for klujax

""" klujax: a KLU solver for JAX """

__version__ = "0.2.10"
__author__ = "Floris Laporte"
__all__ = ["solve", "coo_mul_vec"]


# Imports =============================================================================


from functools import partial, wraps
from time import time

import jax
import jax.numpy as jnp
import numpy as np
from jax import core, lax
from jax.core import ShapedArray
from jax.interpreters import ad, batching
from jaxlib import xla_client
from jax._src.interpreters.xla import (
    _backend_specific_translations,
)

import klujax_cpp


# Config ==============================================================================


jax.config.update("jax_enable_x64", True)
jax.config.update("jax_platform_name", "cpu")


# Constants ===========================================================================


COMPLEX_DTYPES = (
    np.complex64,
    np.complex128,
    # np.complex256,
    jnp.complex64,
    jnp.complex128,
)


# Primitives ==========================================================================


solve_f64 = core.Primitive("solve_f64")
solve_c128 = core.Primitive("solve_c128")
coo_mul_vec_f64 = core.Primitive("coo_mul_vec_f64")
coo_mul_vec_c128 = core.Primitive("coo_mul_vec_c128")


# Helper Decorators ===================================================================

_cpu_translations = _backend_specific_translations["cpu"]


def _wrap_old_translation(f):
    @wraps(f)
    def wrapped(ctx, avals_in, avals_out, *args, **kw):
        ans = f(ctx.builder, *args, **kw)
        return [ans]

    return wrapped


def xla_register_cpu(primitive, cpp_fun):
    name = primitive.name.encode()

    def decorator(fun):
        xla_client.register_custom_call_target(
            name,
            cpp_fun(),
        )
        _cpu_translations[primitive] = _wrap_old_translation(partial(fun, name))
        #mlir.register_lowering(primitive, partial(fun, name), 'cpu')
        return fun

    return decorator


def ad_register(primitive):
    def decorator(fun):
        ad.primitive_jvps[primitive] = fun
        return fun

    return decorator


def transpose_register(primitive):
    def decorator(fun):
        ad.primitive_transposes[primitive] = fun
        return fun

    return decorator


def vmap_register(primitive, operation):
    def decorator(fun):
        batching.primitive_batchers[primitive] = partial(fun, operation)
        return fun

    return decorator


# The Functions =======================================================================


[docs]@jax.jit # jitting by default allows for empty implementation definitions def solve(Ai, Aj, Ax, b): if any(x.dtype in COMPLEX_DTYPES for x in (Ax, b)): result = solve_c128.bind( Ai.astype(jnp.int32), Aj.astype(jnp.int32), Ax.astype(jnp.complex128), b.astype(jnp.complex128), ) else: result = solve_f64.bind( Ai.astype(jnp.int32), Aj.astype(jnp.int32), Ax.astype(jnp.float64), b.astype(jnp.float64), ) return result
[docs]@jax.jit # jitting by default allows for empty implementation definitions def coo_mul_vec(Ai, Aj, Ax, b): if any(x.dtype in COMPLEX_DTYPES for x in (Ax, b)): result = coo_mul_vec_c128.bind( Ai.astype(jnp.int32), Aj.astype(jnp.int32), Ax.astype(jnp.complex128), b.astype(jnp.complex128), ) else: result = coo_mul_vec_f64.bind( Ai.astype(jnp.int32), Aj.astype(jnp.int32), Ax.astype(jnp.float64), b.astype(jnp.float64), ) return result
# Implementation ====================================================================== @solve_f64.def_impl @solve_c128.def_impl @coo_mul_vec_f64.def_impl @coo_mul_vec_c128.def_impl def coo_vec_operation_impl(Ai, Aj, Ax, b): # No implementations needed, as function is jitted by default (see above) raise NotImplementedError # Abstract Evaluations ================================================================ @solve_f64.def_abstract_eval @solve_c128.def_abstract_eval @coo_mul_vec_f64.def_abstract_eval @coo_mul_vec_c128.def_abstract_eval def coo_vec_operation_abstract_eval(Ai, Aj, Ax, b): return ShapedArray(b.shape, b.dtype) # XLA Implementations ================================================================= @xla_register_cpu(solve_f64, klujax_cpp.solve_f64) @xla_register_cpu(solve_c128, klujax_cpp.solve_c128) @xla_register_cpu(coo_mul_vec_f64, klujax_cpp.coo_mul_vec_f64) @xla_register_cpu(coo_mul_vec_c128, klujax_cpp.coo_mul_vec_c128) def coo_vec_operation_xla(primitive_name, c, Ai, Aj, Ax, b): Ax_shape = c.get_shape(Ax) Ai_shape = c.get_shape(Ai) Aj_shape = c.get_shape(Aj) b_shape = c.get_shape(b) *_n_lhs_list, _Anz = Ax_shape.dimensions() assert len(_n_lhs_list) < 2, "solve alows for maximum one batch dimension." _n_lhs = int(np.prod(np.array(_n_lhs_list, np.int32))) Ax = xla_client.ops.Reshape(Ax, (_n_lhs * _Anz,)) Ax_shape = c.get_shape(Ax) if _n_lhs_list: _n_lhs_b, _n_col, *_n_rhs_list = b_shape.dimensions() else: _n_col, *_n_rhs_list = b_shape.dimensions() _n_lhs_b = 1 assert _n_lhs_b == _n_lhs, "Batch dimension of Ax and b don't match." _n_col = int(_n_col) _n_rhs = int(np.prod(np.array(_n_rhs_list, dtype=np.int32))) b = xla_client.ops.Reshape(b, (_n_lhs, _n_col, _n_rhs)) b = xla_client.ops.Transpose(b, (0, 2, 1)) b = xla_client.ops.Reshape(b, (_n_lhs * _n_rhs * _n_col,)) b_shape = c.get_shape(b) Anz = xla_client.ops.ConstantLiteral(c, np.int32(_Anz)) n_col = xla_client.ops.ConstantLiteral(c, np.int32(_n_col)) n_rhs = xla_client.ops.ConstantLiteral(c, np.int32(_n_rhs)) n_lhs = xla_client.ops.ConstantLiteral(c, np.int32(_n_lhs)) Anz_shape = xla_client.Shape.array_shape(np.dtype(np.int32), (), ()) n_col_shape = xla_client.Shape.array_shape(np.dtype(np.int32), (), ()) n_lhs_shape = xla_client.Shape.array_shape(np.dtype(np.int32), (), ()) n_rhs_shape = xla_client.Shape.array_shape(np.dtype(np.int32), (), ()) result = xla_client.ops.CustomCallWithLayout( c, primitive_name, operands=(n_col, n_lhs, n_rhs, Anz, Ai, Aj, Ax, b), operand_shapes_with_layout=( n_col_shape, n_lhs_shape, n_rhs_shape, Anz_shape, Ai_shape, Aj_shape, Ax_shape, b_shape, ), shape_with_layout=b_shape, ) result = xla_client.ops.Reshape(result, (_n_lhs, _n_rhs, _n_col)) result = xla_client.ops.Transpose(result, (0, 2, 1)) if _n_lhs_list: result = xla_client.ops.Reshape(result, (_n_lhs, _n_col, *_n_rhs_list)) else: result = xla_client.ops.Reshape(result, (_n_col, *_n_rhs_list)) return result # Forward Gradients =================================================================== @ad_register(solve_f64) @ad_register(solve_c128) def solve_value_and_jvp(arg_values, arg_tangents): Ai, Aj, Ax, b = arg_values dAi, dAj, dAx, db = arg_tangents dAx = dAx if not isinstance(dAx, ad.Zero) else lax.zeros_like_array(Ax) dAi = dAi if not isinstance(dAi, ad.Zero) else lax.zeros_like_array(Ai) dAj = dAj if not isinstance(dAj, ad.Zero) else lax.zeros_like_array(Aj) db = db if not isinstance(db, ad.Zero) else lax.zeros_like_array(b) x = solve(Ai, Aj, Ax, b) dA_x = coo_mul_vec(Ai, Aj, dAx, x) invA_dA_x = solve(Ai, Aj, Ax, dA_x) invA_db = solve(Ai, Aj, Ax, db) return x, -invA_dA_x + invA_db @ad_register(coo_mul_vec_f64) @ad_register(coo_mul_vec_c128) def coo_mul_vec_value_and_jvp(arg_values, arg_tangents): Ai, Aj, Ax, b = arg_values dAi, dAj, dAx, db = arg_tangents dAx = dAx if not isinstance(dAx, ad.Zero) else lax.zeros_like_array(Ax) dAi = dAi if not isinstance(dAi, ad.Zero) else lax.zeros_like_array(Ai) dAj = dAj if not isinstance(dAj, ad.Zero) else lax.zeros_like_array(Aj) db = db if not isinstance(db, ad.Zero) else lax.zeros_like_array(b) x = coo_mul_vec(Ai, Aj, Ax, b) dA_b = coo_mul_vec(Ai, Aj, dAx, b) A_db = coo_mul_vec(Ai, Aj, Ax, db) return x, dA_b + A_db # Backward Gradients through Transposition ============================================ @transpose_register(solve_f64) @transpose_register(solve_c128) def solve_transpose(ct, Ai, Aj, Ax, b): assert not ad.is_undefined_primal(Ai) assert not ad.is_undefined_primal(Aj) assert not ad.is_undefined_primal(Ax) assert not ad.is_undefined_primal(Ax) assert ad.is_undefined_primal(b) return None, None, None, solve(Aj, Ai, Ax.conj(), ct) # = inv(A).H@ct [= ct@inv(A)] @transpose_register(coo_mul_vec_f64) @transpose_register(coo_mul_vec_c128) def coo_mul_vec_transpose(ct, Ai, Aj, Ax, b): assert not ad.is_undefined_primal(Ai) assert not ad.is_undefined_primal(Aj) assert ad.is_undefined_primal(Ax) != ad.is_undefined_primal(b) # xor if ad.is_undefined_primal(b): return None, None, None, coo_mul_vec(Aj, Ai, Ax.conj(), ct) # = A.T@ct [= ct@A] else: dA = ct[Ai] * b[Aj] dA = dA.reshape(dA.shape[0], -1).sum(-1) # not sure about this... return None, None, dA, None # Vectorization (vmap) ================================================================ @vmap_register(solve_f64, solve) @vmap_register(solve_c128, solve) @vmap_register(coo_mul_vec_f64, coo_mul_vec) @vmap_register(coo_mul_vec_c128, coo_mul_vec) def coo_vec_operation_vmap(operation, vector_arg_values, batch_axes): aAi, aAj, aAx, ab = batch_axes Ai, Aj, Ax, b = vector_arg_values assert aAi is None, "Ai cannot be vectorized." assert aAj is None, "Aj cannot be vectorized." if aAx is not None and ab is not None: assert isinstance(aAx, int) and isinstance(ab, int) n_lhs = Ax.shape[aAx] if ab != 0: Ax = jnp.moveaxis(Ax, aAx, 0) if ab != 0: b = jnp.moveaxis(b, ab, 0) result = operation(Ai, Aj, Ax, b) return result, 0 if ab is None: assert isinstance(aAx, int) n_lhs = Ax.shape[aAx] if aAx != 0: Ax = jnp.moveaxis(Ax, aAx, 0) b = jnp.broadcast_to(b[None], (Ax.shape[0], *b.shape)) result = operation(Ai, Aj, Ax, b) return result, 0 if aAx is None: assert isinstance(ab, int) if ab != 0: b = jnp.moveaxis(b, ab, 0) n_lhs, n_col, *n_rhs_list = b.shape n_rhs = np.prod(np.array(n_rhs_list, dtype=np.int32)) b = b.reshape(n_lhs, n_col, n_rhs).transpose((1, 0, 2)).reshape(n_col, -1) result = operation(Ai, Aj, Ax, b) result = result.reshape(n_col, n_lhs, *n_rhs_list) return result, 1 raise ValueError("invalid arguments for vmap") # Quick Tests ========================================================================= if __name__ == "__main__": A = jnp.array( [ [2 + 3j, 3, 0, 0, 0], [3, 0, 4, 0, 6], [0, -1, -3, 2, 0], [0, 0, 1, 0, 0], [0, 4, 2, 0, 1], ], dtype=jnp.complex128, ) A = jnp.array( [ [2, 3, 0, 0, 0], [3, 0, 4, 0, 6], [0, -1, -3, 2, 0], [0, 0, 1, 0, 0], [0, 4, 2, 0, 1], ], dtype=jnp.float64, ) b = jnp.array([[8], [45], [-3], [3], [19]], dtype=jnp.float64) b = jnp.array([[8, 7], [45, 44], [-3, -4], [3, 2], [19, 18]], dtype=jnp.float64) b = jnp.array([3 + 8j, 8 + 45j, 23 + -3j, -7 - 3j, 13 + 19j], dtype=jnp.complex128) b = jnp.array([8, 45, -3, 3, 19], dtype=jnp.float64) Ai, Aj = jnp.where(abs(A) > 0) Ax = A[Ai, Aj] t = time() result = solve(Ai, Aj, Ax, b) print(f"{time()-t:.3e}", result) t = time() result = solve(Ai, Aj, Ax, b) print(f"{time()-t:.3e}", result) t = time() result = solve(Ai, Aj, Ax, b) print(f"{time()-t:.3e}", result) def solve_sum(Ai, Aj, Ax, b): return solve(Ai, Aj, Ax, b).sum() solve_sum_grad = jax.grad(solve_sum, 2) t = time() result = solve_sum_grad(Ai, Aj, Ax, b) print(f"{time()-t:.3e}", result) def coo_mul_vec_sum(Ai, Aj, Ax, b): return coo_mul_vec(Ai, Aj, Ax, b).sum() coo_mul_vec_sum_grad = jax.grad(coo_mul_vec_sum, 3) t = time() result = coo_mul_vec_sum_grad(Ai, Aj, Ax, b) print(f"{time()-t:.3e}", result)