""" SAX backend for EME (default backend) """
from typing import Any, Dict, List, Optional
import numpy as np
from ..cell import Cell
from ..mode import Mode
from ..mode import inner_product as inner_product_normal
from ..mode import inner_product_conj
DEFAULT_CONJUGATE = True
DEFAULT_ENFORCE_RECIPROCITY = False
DEFAULT_ENFORCE_LOSSY_UNITARITY = False
[docs]
def compute_interface_s_matrix(
modes1: List[Mode],
modes2: List[Mode],
conjugate: bool = DEFAULT_CONJUGATE,
enforce_reciprocity: bool = DEFAULT_ENFORCE_RECIPROCITY,
enforce_lossy_unitarity: bool = DEFAULT_ENFORCE_LOSSY_UNITARITY,
):
"""get the S-matrix of the interface between two `CrossSection`s"""
# overlap matrices
inner_product = inner_product_conj if conjugate else inner_product_normal
conj = np.conj if conjugate else lambda a: a
NL, NR = len(modes1), len(modes2)
O_LL = np.array([inner_product(modes1[m], modes1[m]) for m in range(NL)])
O_RR = np.array([inner_product(modes2[n], modes2[n]) for n in range(NR)])
O_LR = np.array([[inner_product(modes1[m], modes2[n]) for n in range(NR)] for m in range(NL)]) # fmt: skip
O_RL = np.array([[inner_product(modes2[m], modes1[n]) for n in range(NL)] for m in range(NR)]) # fmt: skip
# additional phase correction (disabled?).
if conjugate:
O_LL = np.real(O_LL)
O_RR = np.real(O_RR)
# ignoring the phase seems to corresponds best with lumerical.
# alternative phase correction (probably worth testing this out)
# Question: is this not just an abs ;) ?
# O_LL = O_LL*np.exp(-1j*np.angle(O_LL))
# O_RR = O_RR*np.exp(-1j*np.angle(O_RR))
# yet another alternative phase correction (probably worth testing this out too)
# O_LR = O_LR*np.diag(np.exp(-1j*np.angle(np.diag(O_LR))))
# O_RL = O_RL*np.diag(np.exp(-1j*np.angle(np.diag(O_RL))))
# transmission L->R
LHS = conj(O_LR) + O_RL.T
RHS = np.diag(2 * O_LL)
T_LR, _, _, _ = np.linalg.lstsq(LHS, RHS, rcond=None)
# HACK: we don't expect gain --> invert singular values that lead to gain
# see: https://github.com/BYUCamachoLab/emepy/issues/12
U, t, V = np.linalg.svd(T_LR, full_matrices=False)
t = np.where(t > 1, 1 / t, t)
T_LR = U @ np.diag(t) @ V
# transmission R->L
LHS = conj(O_RL) + O_LR.T
RHS = np.diag(2 * O_RR)
T_RL, _, _, _ = np.linalg.lstsq(LHS, RHS, rcond=None)
# HACK: we don't expect gain --> invert singular values that lead to gain
U, t, V = np.linalg.svd(T_RL, full_matrices=False)
t = np.where(t > 1, 1 / t, t)
T_RL = U @ np.diag(t) @ V
# reflection
R_LR = np.diag(1 / (2 * O_LL)) @ (O_RL.T - conj(O_LR)) @ T_LR # type: ignore
R_RL = np.diag(1 / (2 * O_RR)) @ (O_LR.T - conj(O_RL)) @ T_RL # type: ignore
# s-matrix
S = np.concatenate(
[
np.concatenate([R_LR, T_RL], 1),
np.concatenate([T_LR, R_RL], 1),
],
0,
)
# enforce S@S.H is diagonal: HACK!
if enforce_lossy_unitarity:
U, s, V = np.linalg.svd(S)
S = np.diag(s) @ U @ V
# ensure reciprocity: HACK?
if enforce_reciprocity:
S = 0.5 * (S + S.T)
# create port map
in_ports = [f"left@{i}" for i in range(len(modes1))]
out_ports = [f"right@{i}" for i in range(len(modes2))]
port_map = {p: i for i, p in enumerate(in_ports + out_ports)}
return S, port_map
[docs]
def compute_interface_s_matrices(
modes: List[List[Mode]],
conjugate: bool = DEFAULT_CONJUGATE,
enforce_reciprocity: bool = DEFAULT_ENFORCE_RECIPROCITY,
enforce_lossy_unitarity: bool = DEFAULT_ENFORCE_LOSSY_UNITARITY,
):
"""get all the S-matrices of all the interfaces in a collection of `CrossSections`"""
return {
f"i_{i}_{i + 1}": compute_interface_s_matrix(
modes1=modes1,
modes2=modes2,
conjugate=conjugate,
enforce_reciprocity=enforce_reciprocity,
enforce_lossy_unitarity=enforce_lossy_unitarity,
)
for i, (modes1, modes2) in enumerate(zip(modes[:-1], modes[1:]))
}
[docs]
def compute_propagation_s_matrix(modes: List[Mode], cell_length: float):
"""get the propagation S-matrix of each `Mode` belonging to a `CrossSection` in a `Cell` with a certain length."""
s_dict = {
(f"left@{i}", f"right@{i}"): np.exp(
2j * np.pi * mode.neff / mode.env.wl * cell_length
)
for i, mode in enumerate(modes)
}
s_dict = {**s_dict, **{(p2, p1): v for (p1, p2), v in s_dict.items()}}
return s_dict
[docs]
def compute_propagation_s_matrices(
modes: List[List[Mode]],
cells: Optional[List[Cell]] = None,
cell_lengths: Optional[List[float]] = None,
):
"""get all the propagation S-matrices of all the `Modes` belonging to each `CrossSection`"""
if cells is None and cell_lengths is None:
raise ValueError(
"Please specify one of both when calculating the S-matrix: `cells` or `cell_lengths`."
)
if cells is not None and cell_lengths is not None:
raise ValueError("Please specify EITHER `cells` OR `cell_lengths` (not both).")
if cells:
cell_lengths = [cell.length for cell in cells]
assert cell_lengths is not None
if not len(cell_lengths) == len(modes):
raise ValueError(
f"len(cell_lengths) != len(modes): {len(cell_lengths)} != {len(modes)}"
)
return {
f"p_{i}": compute_propagation_s_matrix(modes_, cell_length=cell_length)
for i, (modes_, cell_length) in enumerate(zip(modes, cell_lengths))
}
[docs]
def select_ports(
S: np.ndarray[Any, np.dtype[np.float64]], port_map: Dict[str, int], ports: List[str]
):
"""Keep subset of an S-matrix
Args:
S: the S-matrix to downselect from
port_map: a port name to s-matrix index mapping
ports: the port names to keep
Returns:
the downselected s-matrix and port map
"""
idxs = np.array([port_map[port] for port in ports], dtype=np.int_)
s = S[idxs, :][:, idxs]
new_port_map = {p: i for i, p in enumerate(ports)}
return s, new_port_map