Source code for meow.eme.common

""" SAX backend for EME (default backend) """

from typing import Any, Dict, List, Optional

import numpy as np

from ..cell import Cell
from ..mode import Mode
from ..mode import inner_product as inner_product_normal
from ..mode import inner_product_conj

DEFAULT_CONJUGATE = True
DEFAULT_ENFORCE_RECIPROCITY = False
DEFAULT_ENFORCE_LOSSY_UNITARITY = False


[docs] def compute_interface_s_matrix( modes1: List[Mode], modes2: List[Mode], conjugate: bool = DEFAULT_CONJUGATE, enforce_reciprocity: bool = DEFAULT_ENFORCE_RECIPROCITY, enforce_lossy_unitarity: bool = DEFAULT_ENFORCE_LOSSY_UNITARITY, ): """get the S-matrix of the interface between two `CrossSection`s""" # overlap matrices inner_product = inner_product_conj if conjugate else inner_product_normal conj = np.conj if conjugate else lambda a: a NL, NR = len(modes1), len(modes2) O_LL = np.array([inner_product(modes1[m], modes1[m]) for m in range(NL)]) O_RR = np.array([inner_product(modes2[n], modes2[n]) for n in range(NR)]) O_LR = np.array([[inner_product(modes1[m], modes2[n]) for n in range(NR)] for m in range(NL)]) # fmt: skip O_RL = np.array([[inner_product(modes2[m], modes1[n]) for n in range(NL)] for m in range(NR)]) # fmt: skip # additional phase correction (disabled?). if conjugate: O_LL = np.real(O_LL) O_RR = np.real(O_RR) # ignoring the phase seems to corresponds best with lumerical. # alternative phase correction (probably worth testing this out) # Question: is this not just an abs ;) ? # O_LL = O_LL*np.exp(-1j*np.angle(O_LL)) # O_RR = O_RR*np.exp(-1j*np.angle(O_RR)) # yet another alternative phase correction (probably worth testing this out too) # O_LR = O_LR*np.diag(np.exp(-1j*np.angle(np.diag(O_LR)))) # O_RL = O_RL*np.diag(np.exp(-1j*np.angle(np.diag(O_RL)))) # transmission L->R LHS = conj(O_LR) + O_RL.T RHS = np.diag(2 * O_LL) T_LR, _, _, _ = np.linalg.lstsq(LHS, RHS, rcond=None) # HACK: we don't expect gain --> invert singular values that lead to gain # see: https://github.com/BYUCamachoLab/emepy/issues/12 U, t, V = np.linalg.svd(T_LR, full_matrices=False) t = np.where(t > 1, 1 / t, t) T_LR = U @ np.diag(t) @ V # transmission R->L LHS = conj(O_RL) + O_LR.T RHS = np.diag(2 * O_RR) T_RL, _, _, _ = np.linalg.lstsq(LHS, RHS, rcond=None) # HACK: we don't expect gain --> invert singular values that lead to gain U, t, V = np.linalg.svd(T_RL, full_matrices=False) t = np.where(t > 1, 1 / t, t) T_RL = U @ np.diag(t) @ V # reflection R_LR = np.diag(1 / (2 * O_LL)) @ (O_RL.T - conj(O_LR)) @ T_LR # type: ignore R_RL = np.diag(1 / (2 * O_RR)) @ (O_LR.T - conj(O_RL)) @ T_RL # type: ignore # s-matrix S = np.concatenate( [ np.concatenate([R_LR, T_RL], 1), np.concatenate([T_LR, R_RL], 1), ], 0, ) # enforce S@S.H is diagonal: HACK! if enforce_lossy_unitarity: U, s, V = np.linalg.svd(S) S = np.diag(s) @ U @ V # ensure reciprocity: HACK? if enforce_reciprocity: S = 0.5 * (S + S.T) # create port map in_ports = [f"left@{i}" for i in range(len(modes1))] out_ports = [f"right@{i}" for i in range(len(modes2))] port_map = {p: i for i, p in enumerate(in_ports + out_ports)} return S, port_map
[docs] def compute_interface_s_matrices( modes: List[List[Mode]], conjugate: bool = DEFAULT_CONJUGATE, enforce_reciprocity: bool = DEFAULT_ENFORCE_RECIPROCITY, enforce_lossy_unitarity: bool = DEFAULT_ENFORCE_LOSSY_UNITARITY, ): """get all the S-matrices of all the interfaces in a collection of `CrossSections`""" return { f"i_{i}_{i + 1}": compute_interface_s_matrix( modes1=modes1, modes2=modes2, conjugate=conjugate, enforce_reciprocity=enforce_reciprocity, enforce_lossy_unitarity=enforce_lossy_unitarity, ) for i, (modes1, modes2) in enumerate(zip(modes[:-1], modes[1:])) }
[docs] def compute_propagation_s_matrix(modes: List[Mode], cell_length: float): """get the propagation S-matrix of each `Mode` belonging to a `CrossSection` in a `Cell` with a certain length.""" s_dict = { (f"left@{i}", f"right@{i}"): np.exp( 2j * np.pi * mode.neff / mode.env.wl * cell_length ) for i, mode in enumerate(modes) } s_dict = {**s_dict, **{(p2, p1): v for (p1, p2), v in s_dict.items()}} return s_dict
[docs] def compute_propagation_s_matrices( modes: List[List[Mode]], cells: Optional[List[Cell]] = None, cell_lengths: Optional[List[float]] = None, ): """get all the propagation S-matrices of all the `Modes` belonging to each `CrossSection`""" if cells is None and cell_lengths is None: raise ValueError( "Please specify one of both when calculating the S-matrix: `cells` or `cell_lengths`." ) if cells is not None and cell_lengths is not None: raise ValueError("Please specify EITHER `cells` OR `cell_lengths` (not both).") if cells: cell_lengths = [cell.length for cell in cells] assert cell_lengths is not None if not len(cell_lengths) == len(modes): raise ValueError( f"len(cell_lengths) != len(modes): {len(cell_lengths)} != {len(modes)}" ) return { f"p_{i}": compute_propagation_s_matrix(modes_, cell_length=cell_length) for i, (modes_, cell_length) in enumerate(zip(modes, cell_lengths)) }
[docs] def select_ports( S: np.ndarray[Any, np.dtype[np.float64]], port_map: Dict[str, int], ports: List[str] ): """Keep subset of an S-matrix Args: S: the S-matrix to downselect from port_map: a port name to s-matrix index mapping ports: the port names to keep Returns: the downselected s-matrix and port map """ idxs = np.array([port_map[port] for port in ports], dtype=np.int_) s = S[idxs, :][:, idxs] new_port_map = {p: i for i, p in enumerate(ports)} return s, new_port_map