Skip to content

Simulating an All-Pass Filter

A simple comparison between an analytical evaluation of an all pass filter and using SAX.

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt

import sax

Schematic

svgbob_7112ce8c3b679a5fc1515573e0371974.svg

Simulation & Design Parameters

loss = 0.1  # [dB/μm] (alpha) waveguide loss
neff = 2.34  # Effective index of the waveguides
ng = 3.4  # Group index of the waveguides
wl0 = 1.55  # [μm] the wavelength at which neff and ng are defined
ring_length = 10.0  # [μm] Length of the ring
coupling = 0.5  # [] coupling of the coupler
wl = jnp.linspace(1.5, 1.6, 1000)  # [μm] Wavelengths to sweep over

Frequency Domain Analytically

As a comparison, we first calculate the frequency domain response for the all-pass filter analytically:

\[ o = \frac{t-10^{-\alpha L/20}\exp(2\pi j n_{\rm eff}(\lambda) L / \lambda)}{1-t10^{-\alpha L/20}\exp(2\pi j n_{\rm eff}(\lambda) L / \lambda)}s \]
def all_pass_analytical(wl=1.5):
    """Analytic Frequency Domain Response of an all pass filter"""
    detected = jnp.zeros_like(wl)
    transmission = 1 - coupling
    neff_wl = (
        neff + (wl0 - wl) * (ng - neff) / wl0
    )  # we expect a linear behavior with respect to wavelength
    out = jnp.sqrt(transmission) - 10 ** (-loss * ring_length / 20.0) * jnp.exp(
        2j * jnp.pi * neff_wl * ring_length / wl
    )
    out /= 1 - jnp.sqrt(transmission) * 10 ** (-loss * ring_length / 20.0) * jnp.exp(
        2j * jnp.pi * neff_wl * ring_length / wl
    )
    detected = abs(out) ** 2
    return detected
%time detected = all_pass_analytical(wl=wl) # non-jitted evaluation time
all_pass_analytical_jitted = jax.jit(all_pass_analytical)
%time detected = all_pass_analytical_jitted(wl=wl) # time to jit
%time detected = all_pass_analytical_jitted(wl=wl) # evaluation time after jitting

plt.plot(wl * 1e3, detected)
plt.xlabel("λ [nm]")
plt.ylabel("T")
plt.show()
CPU times: user 391 ms, sys: 15.1 ms, total: 406 ms
Wall time: 413 ms
CPU times: user 75.1 ms, sys: 2.89 ms, total: 78 ms
Wall time: 78.9 ms
CPU times: user 183 μs, sys: 4 μs, total: 187 μs
Wall time: 192 μs

png

Scatter Dictionaries

_all_pass_sax, _ = sax.circuit(
    netlist={
        "instances": {
            "dc": {"component": "coupler", "settings": {"coupling": coupling}},
            "top": {
                "component": "straight",
                "settings": {
                    "length": ring_length,
                    "loss_dB_cm": loss * 1e4,
                    "neff": neff,
                    "ng": ng,
                    "wl0": wl0,
                    "wl": wl,
                },
            },
        },
        "connections": {
            "dc,out1": "top,in0",
            "top,out0": "dc,in1",
        },
        "ports": {
            "in0": "dc,in0",
            "out0": "dc,out0",
        },
    },
    models={
        "coupler": sax.models.coupler_ideal,
        "straight": sax.models.straight,
    },
)


def all_pass_sax(wl=1.5):
    sdict = sax.sdict(_all_pass_sax(wl=wl))
    return abs(sdict["in0", "out0"]) ** 2
%time detected_sax = all_pass_sax(wl=wl) # non-jitted evaluation time
all_pass_sax_jitted = jax.jit(all_pass_sax)
%time detected_sax = all_pass_sax_jitted(wl=wl) # time to jit
%time detected_sax = all_pass_sax_jitted(wl=wl) # time after jitting

plt.plot(wl * 1e3, detected, label="analytical")
plt.plot(wl * 1e3, detected_sax, label="sax", ls="--", lw=3)
plt.xlabel("λ [nm]")
plt.ylabel("T")
plt.show()
CPU times: user 580 ms, sys: 16.7 ms, total: 597 ms
Wall time: 616 ms
CPU times: user 143 ms, sys: 7.93 ms, total: 151 ms
Wall time: 122 ms
CPU times: user 53 μs, sys: 3 μs, total: 56 μs
Wall time: 60.1 μs

png